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TECHNICAL NOTE 3667

‘WING-BODY COMBINATIONS WITH CERTAIN GECMETRIC
RESTRAINTS HAVING LOW ZERO-LIFT WAVE DRAG
AT LOW SUPERSONIC MACH NUMBERS

By Harvard Lomax

SUMMARY

Several variational problems involving optimum wing and body combina-

tions having minimum wave drags for different kinds of geometrical restraints

are analyzed. Particular attention is paid to the effect on the wave drag
of shortening the fuselage and, for slender axislly symmetric bodies, the
effect of fixing the fuselage diameter at several points or even of fixing
whole portions of its shape.

INTRODUCTION

Recently several authors have used linearized theory to study the
wave drag of wing-body combinations traveling at supersonic speeds (see,
e.g., refs. 1 to 5). These studies have clearly demonstrated the impor-
tance of finding the wave drag of a whole airplane rather than the separate
wave drags of its wvarious parts (wings, fuselages, etc.), since the magni-
tude of the interference terms can predominate. In effect, this means
that various optimization problems for bodies - such as the problem of
finding the body shape having a minimum wave drag for a given volume -
should be re-examined when interfering wings or other bodies are in the
same flow field. In many cases the solution to the new problem differs
from the body-alone problem only in interpretation.

The purpose of this report is to study minimum wave-drag combina-
tions which satisfy a few of the many possible geometric restraints per-
tinent to the interests of airplane designers. An attempt has been made
to analyze the various problems in a unified manner so that extensions
to other kinds of restraints can be deduced.
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LIST OF IMPORTANT SYMBOLS

aspect ratio

source distribution equivalent to'wing in sense defined by
equation (3)

multipole distribution of order n

wave drag
portion of drag due to all the nth order multipoles for n>0
See equation (8).

additional drag resulting from restraint (See eg. (11).)
restraints defined in equations (19)

distance between apexes on x axis of forecone and aftercone
enclosing wing (See sketch (c).)

length of basic body

. length of modification to basic body

Mach number

2
Polo

2

average body radius
fuselage area in cross section normal to the free stream

normal (to free stream) brojection of wing area in section cut
by plane x; = x + By, cos 6 (See sketch (b).)

speed of free stream

volume

Cartesian coordinate system (See sketch (a).)

source distribution representing the fuselage modifications
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B NIYIE)

6 polar coordinate (See sketch (a).)
Po free-stream density

o See equation (17)-

¢ velocity potential

BASTC THEORY AND ASSUMPTIONS

Basic Theory

Many of the discussions and derivations contained in the following
are carried out on the assumption that the reader is familiar with the
concepts presented in reference 4 which should be considered as a first
part to this report. In particular, - _4;2
an acquaintance with the solutions _ B
to the wave equation referred to as
"miltipoles” is assumed, together ' : U
with Hayes' invariance principle and
the consequent multipole distribu-
tions equivalent to a wing in the

sense that both induce the same
momentum’ spectrum at infinity.

~y

The entire analysis used herein
is based on the assumptions and ideali-
zations necessary to develop the
linearized equation for the velocity
potential, @, in supersonic flow,

namely _ A‘é

Bchxx - q)yy - (Pzz‘ =0 (l)

where p2 = M® - 1 and the reference ,
coordinate system® is shown in r &
sketch (a). The analysis is further

restricted to the solution of prob- L/// \
lems involving a given uncambered ‘37

Sketch (a)

17t should be stressed that the x axis is parallel to the free-
stream direction (wind axes).
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and untwisted wing mounted centrally on a vertically symmetrical fuse-
lage, the entire configuration being at zero angle of attack.

Additional Assumptions

We now make the two additional assumptions: one, the value of BA,
where A 1is the wing aspect ratio, is small; and two, the value of BR/Le,
where R 1is the average body radius and 2Le is the distance along the
X axis in which the multipole strengths differ significantly from zero,
is small. : v '

One can evaluate the significance of these assumptions by studying
their implications relative to the source and multipole distributions
used to simulate the wing and body. Suppose, for example, a group of
multipoles are placed along the body center line, their strengths, Cn(x),
being fixed by the condition that a circular cylinder in the vieinity of
the body is a stream surface when the velocity field induced by these
multipoles is combined with the velocity field induced by the source
sheets representing the given wing. With the assumptions of small BA
and BR/Le mentioned above, the Cp's, for n greater than 0, can be
shown (see,e.g.,ref. 4) to have a negligible effect on the wave drag.
Hence, all the multipoles (for n > 0) that combine with the wing to make
a circular cylinder a stream surface and any additional multipoles (for
n > 0) added to make the body have mild distortions from such a surface
are negligible in evaluating the wave drag. Therefore, under the assump-
tions mentioned above, out of all the singularities distributed along the
body axis, it is necessary, in studying the wave drag, to consider only
the sources. ;

With the restrictions to small values of -BR/Le and mild body dis-
tortion (see Ward, ref. 6, for a discussion of orders of magnitude),
slender-body theory can be used to calculate the body shape, and on the
basis of this theory one can show (see ref. 4, Appendix B) that se(x),
the body cross-sectional area measured normal to the free stream, is
completely determined by the axial source distribution alone. Hence, if
only the exposed panels of the wing are used to calculate the Cn's, Co
is negligible and the entire axial source distribution ao(x) 1s related
to the geometrical properties of the body by the relation

Golx) = U T2 = Use'(x) (2)
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The Wing Equivalent Source Distribution and the
Optimum Cancellation Sources

Let the given wing lie in the z; = O plane. According to Hayes'
theorem (ref. T), the wing equivalent source distribution [ag(x)];, is
obtained by accumulating on the x3 axis, at a distance x from the
origin, all the wing sources intercepted by the line x; = x + By, cos 6,
and then, for a fixed x, averaging these values as 6 varies from O
to 2x. Thus, using thin-airfoil theory to relate the planar source sheet
to wing geometry, one finds.

. 271 ‘
1 _ 2 '
& ao(x) = 2 [ Sy (x,6)d0 (3)
where Sy'(x,0) = 3/dx[Sy(x,6)] and S(x,8) = Normal projection

Sw(x,6) is the normal (to the x axis) .
projection of the wing cross-sectional of wing area along AA
area intercepted by the plane®

Xy = X + By,cos 8 as shown in

sketch (b). Without the addition of l

further restraints, the optimum source
distribution along the x; axis is
that which just cancels the wing
equivalent source distribution. Fur-
ther, this can be interpreted directly
in terms of both fuselage and wing
geometry by means of equations (2)

and (3). Thus, with no further
restraints, the best fuselage shaping,
for a wing-body combination satisfying
the assumptions discussed above, satis-
fies the equation '

27
Se'(x) = - % f Sy (x,0)d0 (k) o x = x+LBycosd
‘ (e}

- U
Y

and has any reasonably smooth cross- X,
sectional form. Notice that the total
' Sketch (b)

2The true oblique plane is given by the equation
X, = X + By,cos 6 + Bz,sin 6

but, to be consistent with the assumptions basic to linearized theory,
the variation with z; 1is neglected.
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volume taken out of the fuselage is exactly equal to the total volume of
the exposed portion of the wing. Hence, the total volume of the modified
combination is the same as that of the original smooth cylinder.

The Drag

The total wave drag of a system can be expressed in terms of its
actual or equivalent multipole distributions as

D=2DO+ZDn ' : (5)
.1

where Dp 1is the drag caused by the nth ordervmultipoles an(x) and is
given by the equation

L Lo

o .
en
2.8 2\/p Xmk/p dxzan<n+l)(Xl)an(n+l)(xz)ln-|Xl -x2|, n=0,1,2. ..
q ) ' ' : v
© Lo ~Lo
(6)

' n+1 '
where an(n+l)(x) represents (0/dx) an(x). Under the assumptions

[+ ]
given above, the magnitude of % Dn 1is small. Let us designate it by

D¢, so that, in general,
D = 2Dy + D¢ (7)

On the other hand, the total wave drag of a system composed of the
combination of a wing and a body can also be written symbolically as

D = Dy + 2D + Dy, (8)

where

g

drag of the wing alone

drag of the body alone

&

Dyp

interference drag
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The various components of wave drag defined in equations (7) and (8)
help one to evaluate more readily the drag reductions that can be realized
from appropriate fuselage formations. Thus, if the fuselage shape satis-
fies equation (4), the total wave drag of the combination under the assump-
tions that PBA and BR/Le are small can be written either as

D=D¢ 19)
or as

D =Dy - D (10)

If, in finding the fuselage shape,

(a the multipoles representing a wing and a body flying separately
are assumed to represent the same wing and body when combined (1 e.,
the shape fields can be superimposed),

(b) the multipoles representing the fuselage are equal in magnitude
but opposite in sign to the wing equivalent multipoles,

then equation (10) holds without the assumption of small BA and BR/Le.
In subsequent problems we will discuss the effects on the wave drag
and fuselage area distribution of adding certain additional restraints to
the body geometry. The addition of such restraints may or may not change
the relation given by equation (10), but they must always add a term to
equation (9) so that v
D = D¢ + Dpe

Dre 2 0

(11)

WINGS CENTRALLY MOUNTED ON SLENDER QUASI-CYLINDERS

This section is devoted to the solution of two problems involving a
given uncambered and untwisted wing mounted centrally at zero angle of
attack on a tube that is cylindrical forward of some point ahead of the
wing. The problems are, in both cases, to find the area distribution of
the fuselage behind the cylindrical portion that will minimize the wave
drag of the combination.
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Shortening the Fuselage

Remembering the assumptions listed at the beginning of this section,
let us consider the following problem: '

(i) Given a wing and a slender fuselage having the same normal
cross-sectional area in all planes ahead of the plane x= -Lg'
(see sketch (c)), what is the optimum fuselage area distribution
behind the plane x = -ILo' if the fuselage must end at the plane
X=lo?

- Of course, if 15 >1Ly (i.e., the
body modification can extend over the
entire range enclosed by the forecone

Y and aftercone enclosing the wing),
VAR the solution is already given by equa-
/N tion (k). Hence, in the following,
\ 15 < Lg.

e
~< Y

For simplicity of notations,

\ let ay(x) represent the sources
along the fuselage center line and
ao(x) represent the wing equivalent
source distribution. Then, according
to equation (6)

// Lo Lo

/ Do 1 U/\ J[
=2 - . dxq dxolag'(x1) +
/ . q ) )+1on2 ' R , ]
Lo

/ Lo

\\ V4 .
/\\ 4 O"o'(xl)][ao'(XZ)“LO‘JO'(XZ)]11’1|X1-X2|

\
/

' (12)
Sketch (c)

where from the conditions stated in the problem and the geometric'inter-
pretation to the fuselage sources given by equation (2), ay(x) is zero
for values of x outside the interval® -L.' <x < 1.

3Tt is necessary, for equation (6) to be valid, that ao(-Lo") and
ao(lp) be zero. This implies that oo(x) must be continuous and if the
body shape is given by equation (2), this, in turn, means that the stream-
wise gradient of body cross-sectional area must be continuous. It was
pointed out in reference 4 that ag(-L,') and ag(Ly) will both be zero if
the wing has no blunt edges along which the normal component of the free-
stream Mach number is unity or greater.
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Consider now a variation of equation (12) for a fixed ay(x) in the
interval -Lo' < x <L, and a free variation of ao(x) in the sub-

- interval -L,' < x < 15. There results
1 to Lo
2 [ , -
= 8D, = --——-—2-u/\_,dX16aoTX1) b/\ 8o ' (x2) 1n |x1- x| dxo +
q lmUo - 1
. L, | Lo
lo

@o'(Xz)ln |x1-xo]dxs | =0
_LO'

Integrate once by parts with respect to xi (since the variations ®ag(-Lg')
and dao(ly) must be zero). Then, by the fundamental lemms of the calculus
of variations, the bracketed term must be zero for p'Lo' < x3 £ 1lp and one
finds the condition ' :

Lo | lo
ao ' (x2)dxa ag ' (x2)dxz . :
. —_— —_— =0 Lo <x1 <1, (13)
-Lo' - X2 y T X1- X2 '

0

Equation (13) is an integral equation which can be inverted (by methods
such as those outlined in ref. 8). Inverting, integrating once with
respect to x, and expressing oao(x) and ag(x) by means of equations (2)
and (3), respectively, one finds

| a1 : '
1 () = - 5 f Su'(x,6)a8 +\\/(Z°'X)(LO + %)

A on2 .
| A f dxlf a0 S (41,6) (14)
_ : Tl o (Xl'X)J(Lo'+}hJ(X1'1o)' o

which gives the optimum fuselage area distribution under the conditions
and assumptions posed.

The wave drag of the combination represented by equation (14) can be
- expressed either in the terms defined in equation (8) or (11). Let us
first consider the form given by equation (8). If the expression for the
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drag of an nth order multipole distribution is integrated once by
parts, there results since an(n+l (-Lo') = an(n+l)(Lo) =0

L L
Dy _ p=n fo a,(n)(xl)‘dxlf © an(n+l)(:<2)dx2
4 hng. ® n . Xy -Xo '
(@] _LO! _LO )

Using this expression, one can readily show that equafion (12) yields

Lo 1

o)
= - L f a (X1‘)dx1Vf o' (x2)dxz
= = o
4 20U Lo’ Lo' X1 - X2
1o Lo
__1 Jf a,(xl)dlef ao'(X2)dX2
0
EJTUOZ _Lo' ‘ _LO' X1 = X2
so that, by equation (13)
A 15 1
D S ' (x2) dx ‘
Wb Q 2 2
= - 1 > f Q,O(Xl)d_xlf ° = - -D—b
9 2y . r X1-Xp q
' Lo Lo

Hence, for any.combination satisfying equation (lh), once again

D = Dy - Dy

On the other hand, Dye, the increase in drag caused by shortening
the fuselage can also be obtained.~rIntegrating‘equation'(12) by parts,
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one has (note Dpe = 2Dg)

Lo © LO

Dre 1 [ag'(x2) + ag'(x2)lax
I lao(x1) + ao(x1)léxs 0 o' (x2) Jaxe
q. EﬁUo 1 ' 1
-LO —LO Xl -EXZ
Combined with equation (13), this becomes
| ' ch> I '
D a,'(x2) + "(x
re 1 - f ao(xl)d-xlf o' (x2) % (x2) axa
4 2w, . X1- Xz -
, , lo - - Lo

The derivative of equation (14) with respect to x gives

- o
. : -1 ao'(Xl)J(Lo' +x1)(x1-15)
ac'(x) + ag'(x) = . dxy;
G om0 Y . |
—LO' S X S lo
so
. | A Lo v “ Lo :
Dre | _1 Jf o (x1)dx1 k/q B (x2)dxa
a 2nUg2 © X1 - X2
7,0 : . Lo
1 f : dxo . f ao'(Xs)mo' +x3) (x3 -10) dxa
T (x1-x2)V (Lo'+x2) (1o~ x2) ‘ X2 - X3
1
Lo 7 lo

which reduces to

T N SRR N open eny BENN
: o X5) (X5 - : :
=== ao(x1)axy © 0O "2 2T 0 axp  (152)
q 21 o= '
o 1, X¥imXe (Lo' +x.)(x1 - 1o) -




12 NACA TN 3667

or, alternately,

e oo (x1)ag" (x2)
© o L
x1=X2|(lpo+1Ig") -
1n | 2| (o + Lo : : 5 dxadxz  (15b)
[\/(X1+L0')(X2' lo) +‘\/(X2+Lo')(xl- 7'Q)]
50 Original ) '
. Constrained Fuselage Areas
. p; cylinder
Modified L~ ™| :
71
boay’—>\\\ D : - 'Another class of problems is that
i s, NI N in which the magnitude of the fuselage
’ / | { (N area is fixed at various points. Sup-
. A3 pose, for example, that a fuselage
} o shaped according to equation (4) had
—”,”’,7J J. - in some region a cross-sectional area
/? _ too small to be acceptable for some
7/ Practical purppse. The question is,
i then,-what\isfmhe best shape for given
L7 Areas Sb, values of minimum fuselage cross-
5ﬁ,'§k»0”d section area at given planes and what
; . is the penalty in wave drag caused by
wi .
ng all fixed the added constraints? Before consid-

ering the general case of an arbitrary

number of restraints, let us first con-
sider the simple problem:

Sketch (d) _ o

(ii) Given a wing, what (under the various assumptions given
above) is the area distribution of the adjoining fuselage which
has a prescribed area at three given stations (the initial, the
final, and an intermediate station x = di; see sketch (d)) and
yields a minimum wave drag for the combination?

As before, let ao(x) represent the wing equivalent source distribu-
tion. Then the drag caused by the restraints can be written

Lo : L "
Dy 1 . e ag! (x2) + UsSr (Xg)
= 2 [ao(xl)'+UOSf'(Xl)]dxl - dxo
4 2o L ‘ 21, . X1'- Xz o
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where Sf(x) is the unknown fuselage area to be optimized. For simplic-
ity, replace the unknown Sp(x) by o(x) where

~

L X ) 27
o) = [ a?fg) a8+ 5:00) = & [ 8,0x,000 + 5¢(x)
|

-Lg ©
. b an
0(-Lo) = SO
o(Lo) = 82 , }
Let
Coo(x) =o(x);  Lg<x<da
(18)
01 (x) = a(x); di £ x <L
and the restraints on the fuselage area give the relations
o da ' 27
1 .
f O'O'(X)d_X = Sl - So + 'é“;r‘f SW(dl}e)de = JO (l9a)
-Lo - o .
Lo 251
f o1'(x)ax = |85 - S - L f Sy(d1,0)d6 | = J1 - Jg (19p)
d; S cen Jg _ :

where Jg and Jl are conétants fixed by the. given constraints. Notice
J1 = (82 - 8o) (19¢)

so the constant Ji 1s a measure of the difference between the initial
and final areas. ‘ :

Using the usual varlatlonal technlques, we can write, for the quan-
tity to be mlnlmlzed .

- \ d1 : A Lo '
R.rﬁ po f GO'(X)dX,+ Eﬁ f 01'(X)dX
q hx T by
1 'Lo dl
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or

da dy L
P ‘ o." (x2)dx © 5" ax
=2 0o ' (x1)dxy —9—£—El__5 + 01" (x2)dxo |+
o o 0
bz . X1 -~ X2 X1 -Xz2
-Lo ~Lo 1

LO dl " LO 1"
f o1'(x1)dxy f 99" (xg)dxp +f 01 \X2)2 (x2)dxa + N\

X1 =-Xp X3 =Xz
da -Lo ‘ d-l

By taking the variation and satisfying the conditions at the end points,
one obtains the two simultaneous integral equations

dy L 3
] 9 n
f ____.____GO (XZ)dXZ +f O.L(iz_)ix_z. = - 7\—0-; 'Lo <x3 < dl
X1 - Xp2 X3 - X2 2
> (20)
di n Lo
f’ .0_0_(}{_2_23}(_5+f M=_l&- di < x1 <L ‘
Xy = X2 Xy ~ X2 2’ L . © J
~*to

The set of equations (20) is identical to that analyzed by Adams
(ref. 9), page 1k, for bodies of revolution with fixed areas at the
initial, final, and an intermediate section, In the interest of subse-
quent generalization, however, we will consider its solution in the
following way: First write the equations (20) in the equivalent form

Ao
Lo ) -5 »-Lov<x1 < d; o
f o"(x2)dxs '
X1 - X2 - : (21)
-Lg A

-?' dl <'X1 <LO

3
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One can show that

. _ >
: A + Bx Ly - d
o" (x2) = —_— C;_cosh'l --9———-&2-— (22)
L02 - X22 Lo IX2 -dy

is the solution to the integral equatlon (where A, B, and C; are con-
stants) since

(
-l di
Lo -n[B- Cicos (f‘)]’ Lo <x1 <4z
f o" (Xz)dXZ J ° ’ T .
X1=- X2 B (23)
-L, . h N , _
-nfB+Cycos -IF ; di; <x3 <Lg
\ .

which satisfies equation (21). The constraints can now be satisfied by
means of the equations

X v
o'(x) =f o"(x1)dx; = A COS'1<§5—> - B Loz-xz +
o)

'LO

Lo - d -
Cl[(dl— x)cosp™l =0 T T1X LoZ - d12 cos™? -—>J
Lolx - da| ‘ Lo

(24)

and

o(x) - SO=A(:X cos'(fé>+ Lo2 - x2] -g[x NLo® - x2 + L7 cos—l<£—x>:l -
' o

C ‘ 1 Lo -d,%¥
l[(dl x)zcosh ———l— NLoZ - 412 (dl 2x cos'l<-->

2 olX dll

J(Lo2-d:2) (L2 - xa)] o “ (25)
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Since o'(-Lg) = o(Ly) = 0

A =CyWNLZ-d2

and

-d, Ciy. -d1\
Jo = - E':d:L«/Loz- d12 + Lo2cos-1 L—o_>:| + —2—l-~/L02 - dlz[dlcos'l T l> +

O

\V]

/LOZ - dlz:l
c
J = - -]g-LOZ‘n + 5 1d1VLo2 - 412

Sclving for C; &nd B, we find

2 -
B = 2]3f2 {delJO - Jl[jdlCOS_l<—i‘q£> + ,\/LOZ - dlz] }
O

‘I([Loz - d-]_

Ci = 2 {ﬂLOEJO - Jl[d.l\/]-.xoz -d12 + Loacos‘l %):l }
(o]

1[Lg2 - a12]3

From equation (25) the fuselage cross-sectional area can be written
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If the additional specification is made that the initial and final
areas are the same, the solution simplifies considerably, since, for such
cases, J1 = O and equations (26) and (27) reduce to

1 2n 1 . : 1 27
Se(x) =8, - = f Syw(x,0)de + ——2——2§[sl-so+ 2—nf sw(dl,e)de]
SRV (Lo" - d1%) o

| ' L2 -d
[(Loz -dlx)J(Loz"XZ)(Loz- d:%) - Log(x-dl)zcosh'l._g___;gi }
. ' ' Lol.X'd.ll

(28)
and
D Dy Dp  2aL.3

21
1 .
—= =20 (s 'So),rsl" So + __f Sw(dl,e)de] (29a)
@ 9 a4 (1 ,2-a2) | 2r

2

Dre L2 1 |

= ——02——|S1- 8 + &= S, (d1,6)d6 | (29p)
q (Lo -dy ) 0

Often the exact statement of the restraint is that S(x) shall not
be less than S; at x = di. In such cases care must be used in applying
equations (26) and (27) or (28) and (29), since they are only valid when
the fuselage cross-sectional ares at di1 is exactly S;. If such is the
case, equations (26) and (28) give the optimum body shape only if Jg > O,
that is, only if

| 27
1
S1 280 - 5= f Sw(da1,0)ae
[e]

Otherwise the optimum variation of area is given by equation (4).
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Next let us generalize the analysis leading to equatlons (26) and (27)

by considering the following problem:

(111 Given a wing, what is the area distribution of the adjoin-
ing fuselage which has prescribed areas at n + 1 stations (1nclud-
ing the initial and final ones fixed by the Mach forecone and
aftercone enveloping the wing, see sketch (e)) and yields a mini-

mum wave drag for the combination?

By analogy with equation (22), the 5 Original
integral equation for o"(x) (where o(x) Mod;fled **'\—'\ cylinde
is defined by eq. (17)) that must be /
satisfied for a minimum wave drag can be
written at once in the form d,\\
\
Lo \
0" (x2)axz | \
———— = N5 df < x1 < i -
o / 7
o
/
i d, »~
i=0,1, .. ., n (30) n,
' /
: /
where dg = —LO and dpi, = Lg. The Areas 50’
quantity Sp2 S,
n . Spessand
o‘"(xg) = Mci_ -ZCicoSh‘l_EQ_:_}iZ_di ang all
JLoZ = %22 T Lo|x2 -4 fixed.
Sketch (e)
(31)
is a solution to equation (30) since it yields
Lo V-1
0" (x2)dxz
T}; n|B + C]_COS chcos <_>:l
~Lo 1
dy_y < x1 <4y, v=1,2, ,on+ 1 (32)
in which

Zcms-l <_>

n+1




20 : NACA TN 3667

Further, it is apparent from equatlons (24) and (25) that, with the con-
ditions o'(-Lo) =0'(Ly) = O -

2 _ .
o'(x) = -BJL,2-x% + Z 1(d1 -x)cosh~? bo” 7 X4 (33)

olx d'

and
=3 v
Sr(x) =8, - -21; f S, (x,0)d6 - gl:x./ Lo - x2 + Lo'zcos'l<f’£>J -
' ’ 0
o | .

[n]

L .
%z {(d - x) Zeosh™?t -NLoZ - diz[dicos'l<%>+xlln02 - XZ]}

IX dll
i=1
(34)

The wave drag due to the restraints can be obtalned by using equa-
tions (32) and (16) ‘Thus

n

Dre 1 ' 1 A -1
5 = -2-B(Go '6?1“) +5 ) Ci| moj - ggcos 1 - LCos™ (== (352)
i=1

or in terms of the components defined in equation (8)

n

% - % + B(So - Sp4q) +Z Cl[nsl - Socos"l< > Sn.,.lcos l(——):l

i=1

g

(35b)

where o3 = o(d;). Notice ¢, = S, and On+1 = Spt1, SO When Sy = Spyq,
n

I =% Zcil(ci - So) (35¢)

i=1
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or -

n .
2.k D, ﬁzci(si - 8) | (354)
i=1 .

Finally, using the known values of Sf(x) at dy,v =0, 1, . . .,
n + 1, one obtains the n + 1, simultaneous equations ‘

an
‘ - -4
(8y - 8o) = - 2l—ﬂ f 8y (dy,0)d8 - g{vaLog -4,% + LogcoS-l<_Ll>J -
0
o
= LoZ - dydy /-4
2 - Qydj ) ~1( -
> zCi (a1 - dv) cosh™ ———— - JLo"-di [dicos. l(i,—v) i
2 Lo|dy - 43| \+o
1 . .
LoZ - dvz}:}; v=1,2, . . ., n+1 (36)
which determine the n + 1 constants B, Ci, Cz, . . ., Cyh. These, in

turn, fix the shape, through equation (3#),vand the wave drag,? through
equations (35).

WINGS CENTRALLY MOUNTED ON SLENDER CLOSED BODIES OF REVOLUTION

In the preceding section the interference between the central portion
of the airplane and its nose and tail regions was neglected. In this por-
tion we will consider the entire fuselage, assuming, first, it is a slender
closed body and, second, it can be calculated in the presence of the wing,
using the same postulates given in the previous section under "Basic Theory
and Assumptions."

*It has come to the author's attention, through a private communica-
tion, that W. T. Lord has obtained a solution similar to the above and is
using it to calculate the drag of bodies of revolution having their areas
specified at a given number of stations. Such a method has the advantage
of -giving the lower bound to the drag of bodies whose areas have been
measured at a discrete number of places and, further, of giving a value
representative of all area variations in the vicinity of the calculated
optimum. ' '
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Unlimited Indentation Length, Fixed Volume

Let us first consider the question:

(iv) Given the wing, body length, and total volume of the com-
bination, what is the area distribution of the body which yields
a minimum wave drag if the apexes of the Mach forecone and
aftercone enclosing the wing lie within the body (see sketch (£))
and the specified volume is large ‘enough for the body to be real?

This problem can be solved in a simple manner by means of
the following lemms discovered‘by R. T. Jones, using methods
similar to those introduced in reference 10.

/’\ Designate the closed body which has a minimum wave drag

2 Jy for a fixed volume and length as a Sears-Haack body. Then the

I::: :::I total drag of a Sears-Haack body and any other wing or (slender)
N 7 body entirely within the fore and after Mach cones with apexes

N at the tail and nose of the Sears-Haack body, respectively, is

y

U given by the equation
v
Sketch (f) D=0 (é L (
' B 1 37)
. SH VSH
where

DSH wave drag of Sears-Haack body alone
D, wave drag of second body alone
Vgg  volume of Sears-Haack body
Vi volume of second body
A proof of this lemma can be obtained by placiﬁg the Sears-Haack
source distribution and the wing equivalent multipole distributions (or

the second body's equivalent multipole distribution) in equation (6).
Since only the sources interfere, the drag can be written in the form

, Lq Lo a,  '(xz)dxz '
- 4 4 SH — © 8
D = Dgy + — ao (x1)dxy + Dy (38)
1

X1 -Xp

-Lo o

where the interference term has been integrated by parts and -Lo', Lo,v
and -l,, 15 form bounds of the arbitrary and Sears-Hasack source
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distributions, 8o, and 20gp respectively. As is well known

Dsg  SVsm
T " T (39)
and
8Var 2x° - 142
S da, (x) = —SE —_0 (%0)
U, "SH nlg? 1o -x2

Placing equation (40) in (38) and integrating, one finds

L
Savsy” o ° g (xa)
D=DSH--——————-—— X3y =———dxy + Dy
nlo* Vs ' Uo '
,_Lo .
and since one can easily show
Lo
Vi= -5 k/ﬁ Xlaol(xl)dxl
) o -L,"

equation (37) follows immediately.

Returning now to problenm (iv), we see that its solution follows from
equation (37) and the solution is, in fact, simply a Sears-Haack body
having, at the appropriate place relative to the wing-body Jjuncture, the
additional ares variation specified by equation (4%). This follows, since,
if Dy represents the combined drag of the wing and indentation, then Vi,
the combined volume of the wing and indentation, is zero. Hence, the
minimum value of D, for a given volume, is obtained when Dgp and Dy are
independently minimized. But Dgy is already a minimum on a volume basis
and Dy is a minimum for a given wing. Notice the location of the wing
along the body is immaterial, provided the required indentation can be
accommodated by the fuselage.
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Limited Indentation Length On Sears-Haack Body,
Fixed Volume

Consider, next, the more difficult problem

(v) Given a wing and Sears-Haack body of length 21y (long enough
to contain the apexes of the fore and after Mach cones enclosing
the wing), what modification of this fuselage within the length
11" + 11 (and within that length only, see sketch (g)) minimizes
the total wave drag for a given total volume?

Haack body ‘tion, it is necessary to consider
. separately two cases; namely, the
one in which 11;' > Lo' and 1, > Lg

’ Basic Sears- In order to answer this ques-
l

[ﬁl (i.e., the portion of the body free
fj N for variation contains the apexes of

y the wing's Mach cone envelope, as
shown in sketch (f)) and the other
in which the preceding conditions
are not satisfied.

'\
N
N
N\
\
\
'\\\. : .
- - First consider the combination
Y for which 1;' >Lo' and 13 > L.
N 7 The wave drag of such a combination
N ,/ can always be calculated using equa-
i tion (37) wherein Dgy is the wave
\\\< . drag of the basic Sears-Haack body
/N Cancellation rixed by the stationary nose snd tail
sources portions, Dy is the combined wave
drag of the wing and the (as yet
unknown) body indentation, and Vi
is the net difference in volume

between Vg, the volume of the Sears-
Haack body, and the final volume of

N\

X the complete configuration. Since
the basic Sears-Haack body is fixed
Sketch (g) and the total volume is given, the

entire term Dgp[l + (2V1/VSH)] is fixed and the solution to the problem
is obviously that for which the wing equivalent sources and the source
simulating the body indentation combine to form a Sears-Hsack distribu-
tion in the interval -1:'< x < 1;.

Using equations (2) and (3) to relate the wing and body source varia-
tions to their respective areas, we find the fuselage cross-sectional areas
can be written for -1, <x< -1; '

8Vay 2 _2v3/ :
sp(x) = PO »(zo - x=)%2 (41a)
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for -1'<x <11

A 21 .
'/ﬁ,...s}('x)g 8VSP§L (12 - x?,)s/z - E}E f Sy(x,0)ae +
; 3nlg , N :
12872 - [(12" + X)(ll“ X)]S/2 (41b)
3n(l+11") -
and for 13 <x<lg

Se(x) = gf%ﬂ% (102-5x2)3/2 (kle)

nlg .

The total wave drag of the w1ng and the fuselage, as glven by equa-
tions (41) is then /

2 oy 128v,5 D :
e T (42)
SH JT(7,1+11') 4

g

/

where D, is defined by equations (5), (6), and (7).

Since, as we have been assuming, BA is small, D¢ 1is negligible,
and a comparison between equations (37) and (42) shows that the drag of
the combination formed by mounting two wing panels on a'Sears-Haack body
can be reduced without a change in the total volume and with a modifica-
tion limited to the interval -1:' < x < 11 by the difference between
the drag of the two panels flying alone and the drag of a Sears-Haack
body having a length equal to 11' + 11, and a volume equal'to the volume
of the two panels. So long as the points x = -1;' and x = 11 do not
lie off the basic body, and so long as the required indenﬁation can be
accommodated, this result is 1ndependent of the wing's’ fore-and-af't
position.

If the body modlflcatlon is limited so that elther 1:'< Lo' or
11 < Lo (see sketch (g)) or both, the above results do not apply, since,
in such cases, the second body - in the sense defined above - cannot be
varied for x between =~11' and -Lg' or Ly and 11 or both, and its
drag cannot, therefore, be reduced to that of an equivalent Sears-Haack
body. .The best modification in this case can be calculated from the
results presented in the material immediately following.
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Limited Indentation On Arbitrary Body -
Fixed Volume

Consider the question

(vi) Gilven a wing, a body length, and the area distribution of
the fore-and-aft portions of a body, what is the variation of
area along the intermediste portion of the body which yields a
minimum wave drag for a fixed total volume?

Again, as in equation (17), let o(x) represent the sum of the sources
representing the basic body and the wing equivalent source distribution,

27

o(x) = 8p(x) + '21? f Sw(x,6)a8 (43)

o}

It is now convenient, however, to let G(x) be a fixed function in the
entire interval -1,' < x < ly, see sketch (h), and let the body modifica-
tions, which are to be optimized in

r the interval -1; <x < 13 be repre-
. sented by ASe(x) which has the end
‘ . Basic  body conditions
2, (not Sears -
Haack)
T A8p'(-11) = ASp'(11) = O
2 \ ,' (L)
\ ‘ . :
’ / ] " \ ASp(-11) =288¢(11) =0
1
} $ o
: l y The change in volume caused by the
Z, : ll body modification, AV, is given by
| \
I
VN
! \
! T

{ Modified — ay . [ aspriom ()
body (modifi-

cations limited

fo this por-
tion of the
body)

Y x

Sketch (h)
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The usual variational procedure leads directly to the integral
equation

11

1
o
ASe" (x2)dxo f 0" (x2)dxo

+ Ao + NXq; -1y <x <1y (46)
-1 X1 = X2 J y Xi1- X2 :
1 -1l

where A, and Ny, are fixed by the conditions given in equations ()
and (45). Equation (46) is similar in form to equation (13) and its
inversion can be obtained by use of methods similar to those for invert-

ing the latter equation. Thus, the solution to equation (46) becomes
for -Z’l S X S 11

. o .
J1.2 - x2 -0 ' (x1)dx
£8p'(x) = -0 (x) + 1 -X f .U (x1)dxy .
" -1 (x1 -x)Nx1Z-1,%

1o :
o' (x1)dx; 4 2L
0! (x2)dx, + = [212 -1:%T5 -2(V + AV):I + —;
1y (x1-x)Wx2-1.2 a* !
(%7)
where
-1 2 ' .
I . 1 Xan"(Xl)d.Xl fo Xan"(X]_)d.Xl ()_|_8)
ne Nx1Z - 1,7 Nx312-112
-7;0" ll

and V dis the total volume of the wing and unmodified fuselage, that is

lo

V= -f x0'(x)dx - (49)

-1t
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Equation (47) integrates to give

nl 12

£Sp(x) = - o(x) + ——= (Iyx + LTIV E S R -

N o 5 5 a/2
- 2I2 - 15T, + 2(V + AV) [(112 - x®)  + H(x)
St (50)
where
-l _
1 ' -1 XX - 7,12 pis
H(x) = = o'(x1)| tan +35 | axy -
1.1 (12%- x®) (x2® - 123)
=lo
ls .
% f 0'(X1)[tan'l Xax - + g] axy (51)

1, «/(le-xz)(xlz-hz)

If Dy is the drag of the original wing-body combination and D
is the drag of a body of revolution having the same normal area distribu-
tion as the modification, then

D D4 DAS+8AV

4 4 a g1t

[2(v + AV) + 15531, - 212] " (52a)

On the other hand Dy can be written

e e ] +n2}
—_ —= |21z - 1:°I, - 2(V + AV + I 52b

where if

1 Xp2 - 1,2

(53)

G(X11X2) X1 - X5 .X12 _ 212

» ¥
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D*/q can be expressed as

-11
Xmb/‘ dxo0 ' (x1)0" (x1)G(x1,%x2) -
1

-'LO' _10

2;/\ dxy J[ dxz0 ' (x1)0" (x2)G(x1,x2) +
-1,' 11

lo lo

JF dxy \jp dXZU'(Xl)G“(XZ)G(XlJXZ)] (54)

Sl li

Limited Indentation On Arbitrary Body -
- Fixed Diameter

As a final example in this section, consider the question

(vii) Given a wing, a body length, and the area distribution of
| the fore-and-aft portions of a body, what is the intermediate
' variation of fuselage area that has a given area at some inter-
mediate station x; = di and yields a minimum wave drag for
the combination? '

Using the same definition for o(x) as is given in equation (43), and
again designating the area modification as ASf(x), one can apply the
same methods used to develop equations (21) and (46) and write the inte-
gral equation for ASp(x) in the form

ly

. 1
ASp" (x2)dx ‘ ° g [ Aoy -l1 <-x < dj
£ 2] 2 _ _f o (Xz)d-xz .\ 07 1 ; i (56)

_zl X1 - X2 ‘10' X1 - Xpo l Al) dl < x < 11

where A, and A, are constants whose values depend upon the restraints.
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The solution to equation (56) can be written

-11
1 0" (x2) -
8Se"(x) = -o"(x) - ———_[ f Jx22 - 1.2dxs -
w112 -x2 L L1yt X %2

o 1.2 xd

c _ 1 - X4y

f (X2) X2 - Zl2dX2 - A- BX:l - Cicosh r

X-X2 talx- aq]
Zl )

(57)

and the three constants A, B, and C; are fixed by the conditions:

(1) continuous slope
1y

f ASe" (x)ax = 0

-1

(2) the body area at x = 1, is unchanged

la
f ASf'(X)dX =0

11
and (3) the body area at d; is given

dl :
f ASp'(x)dx = ASp(dy) ‘
-1 '

The final solution is

7:% - xd
NSe(x) = -o(x) + H(x) - G (x -d;)%cosh™t ——— = 4
2 11 lx- a4

1 12 -dix

N112 - 3,2

'\]7,12— Xé

1.2 - 4,2

o(ds) - H(dl)]}

{ x-ﬂdJ: (Iodl -+ Il) + [ASf(dl)

(58a)

(580)

(58¢)

(59)
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where
21,2 ’ N11%-a,%
Cp = — = [Asf(dl) +0(d1) - B(d1) - ———=(T2d:1 + Io1:3) |  (60)
(11%-d5°)= wl1®

and Ip and H(x) are defined in equations (48) and (51), respectively.

The drag can be expressed either as

D Dy Dag .
— = — - — + gC1AS-(4 6la
1°3 2 188p(d1) (612)

where Dy 1s again the drag of the original ummodified combination and
Dpng 1is the drag of the modification alone, or as

D % B2 1 2 _ a 2 - 2
_(I'lﬁ _ Rq_ + __(_]'n__];_) + T:ll-::r-r' <Bdl - Cinw 112 -d12> (6lb)
: . T ’

where D* and C; are defined by equations (54) and (60), respectively,
and B is given by

B = -11_2 7d1Cy 112 - 442 - 211>  (62)
1

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Aug. 4, 1955
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